- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Hao, Qing (3)
-
Medina, Fabian Javier (3)
-
Xiao, Yue (2)
-
Chen, Qiyu (1)
-
Xu, Dongchao (1)
-
Zhao, Hongbo (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Atmospheric water harvesting (AWH) has been extensively researched as a sustainable solution to current freshwater scarcity. Various bioinspired AWH surfaces have been developed to enhance water-harvesting performance, yet challenges remain in optimizing their structures. In this work, we report a dual-biomimetic AWH surface that combines beetle-inspired heterogeneous wettability with leaf-skeleton-based hierarchical microstructures on a rigid substrate. An authentic leaf skeleton innovatively serves as the mask during photolithography complemented by O2-plasma treatment, enabling precise design of superhydrophilic SiO2 structures with a hierarchy of vein orders forming reticulate meshes on a hydrophobic Si substrate. This design facilitates enhanced water collection through intricate reticulate meshes and directional droplet transport along the abundant multi-order veins. Such AWH surface shows a water-harvesting efficiency of 172 mg cm−2 h−1, increasing up to 62% and 58% over the pristine SiO2/Si wafer and Si wafer, respectively. Additionally, the role of structure orientation in the open-surface droplet transport is explored while the AWH surface is vertically placed during the water-harvesting process. This work highlights the potential of using meticulous natural designs, like leaf skeletons, to improve AWH surfaces, with broad applications in compact devices, such as on-chip evaporative cooling and planar microfluidics manipulation.more » « lessFree, publicly-accessible full text available January 6, 2026
-
Hao, Qing; Xiao, Yue; Medina, Fabian Javier (, ES Materials & Manufacturing)
-
Hao, Qing; Xu, Dongchao; Zhao, Hongbo; Xiao, Yue; Medina, Fabian Javier (, Scientific Reports)
An official website of the United States government
